Ela Checking Nonsingularity of Tridiagonal Matrices Ilan Bar-on
ثبت نشده
چکیده
I. BarOn , B. Codenotti, and M. Leoncini presented a linear time algorithm for checking the nonsingularity of general tridiagonal matrices BIT, 36:206, 19966. A detailed implementation of their algorithm, with some extensions to possibly reducible matrices, is further described in the present paper.
منابع مشابه
Checking nonsingularity of tridiagonal matrices
I. Bar-On, B. Codenotti, and M. Leoncini presented a linear time algorithm for checking the nonsingularity of general tridiagonal matrices [BIT, 36:206, 1996]. A detailed implementation of their algorithm, with some extensions to possibly reducible matrices, is further described in the present paper.
متن کاملEla Determinants of Multidiagonal Matrices
Abstract. The formulas presented in [Molinari, L.G. Determinants of block tridiagonal matrices. Linear Algebra Appl., 2008; 429, 2221–2226] for evaluating the determinant of block tridiagonal matrices with (or without) corners are used to derive the determinant of any multidiagonal matrices with (or without) corners with some specified non-zero minors. Algorithms for calculation the determinant...
متن کاملOn the nonnegative inverse eigenvalue problem of traditional matrices
In this paper, at first for a given set of real or complex numbers $sigma$ with nonnegative summation, we introduce some special conditions that with them there is no nonnegative tridiagonal matrix in which $sigma$ is its spectrum. In continue we present some conditions for existence such nonnegative tridiagonal matrices.
متن کاملEla on Generalized Schur Complement of Nonstrictly Diagonally Dominant Matrices and General H-matrices
This paper proposes the definition of the generalized Schur complement on nonstrictly diagonally dominant matrices and general H−matrices by using a particular generalized inverse, and then, establishes some significant results on heredity, nonsingularity and the eigenvalue distribution for these generalized Schur complements.
متن کاملEla Eigenvalues and Eigenvectors of Tridiagonal Matrices
This paper is continuation of previous work by the present author, where explicit formulas for the eigenvalues associated with several tridiagonal matrices were given. In this paper the associated eigenvectors are calculated explicitly. As a consequence, a result obtained by WenChyuan Yueh and independently by S. Kouachi, concerning the eigenvalues and in particular the corresponding eigenvecto...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1999